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COMBINED FREE AND FORCED CONVECTION FLOW 
ABOUT INCLINED SURFACES IN POROUS MEDIA 
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Abstract-The problem of combined free and forced (mixed) convection about inclined surfaces (or 
wedges) in a saturated porous medium is analyzed on the basis of boundary-layer approximations. 
Similarity solutions are obtained for the special case where the free stream velocity and wall temperature 
distribution of the inclined surface vary according to the same power function of distance. Both aiding 
and opposing flows are considered. It is found that the parameter governing mixed convection from 
inclined surfaces in porous media is Gr/Re. Numerical solutions are obtained for mixed convection from 
an isothermal vertical flat plate as well as an inclined plate with constant heat flux, having an inclined 
angle of 45”. Temperature and velocity profiles for these two cases at different values of Gr/Re are 
presented. For aiding flows the heat-transfer rate is shown to be asymptotically approaching the forced 
or free convection values as the value of Gr/Re approaches the limits of zero and infinity. The criteria 

for pure and mixed convection from inclined surfaces in porous media are established. 

NOMENCLATURE 

4 constant defined in equation (6b); 
B, constant defined in equation (9); 

1: 
specific heat of the convective fluid; 
dimensionless stream function defined by 
equation (15); 

Gr, local Grashof number, 
Gr= lgxlITw-T,~~Kx/vZ; 

9, acceleration due to gravity; 
gX, g,,, gravitational acceleration in x and y 

h, 
K 
k, 

w 
4 

NM, 
Pa 
Pr, 

43 

Ra, 

Re, 

T 
u 3c, 

U, 

u, 

x, 

Y, 

2, 

directions; 
local heat-transfer coefficient; 
permeability of the porous medium; 
thermal conductivity of the saturated porous 
medium; 
angle parameter, m = 2n/(n+ 1); 
constant defined in equation (9); 
local Nusselt number, NM = hx/k; 

pressure; 
Prandtl number, Pr = v/q 

local heat-transfer rate; 
modified local Rayleigh number, 
Ra = ~mIMWL--T,lx/~~; 
local Reynolds number, Re E U, x/v; 

temperature; 
free stream velocity in x-direction; 
Darcy’s velocity in x-direction; 
Darcy’s velocity in y-direction; 
coordinate along the inclined impermeable 
surface; 
coordinate perpendicular to the inclined 
impermeable surface; 
coordinate parallel to the gravitational 
acceleration. 

*Professor. 

Greek symbols 

a, equivalent thermal diffusivity; 

8, coefficient of thermal expansion; 
6 r, thermal boundary-layer thickness; 

‘I? dimensionless similarity variable defined in 
equation (14); 

VT> value of r) at the edge of the thermal 
boundary layer; 

8, dimensionless temperature defined by 
equation (16); 

1, constant defined in equation (6b); 

K viscosity of convective fluid ; 
V, kinematic viscosity of the convective fluid; 

P? density of convective fluid; 

$1 

velocity potential; 
stream function. 

Subscript 

a, condition at infinity; 

W, condition at the wall. 

INTRODUCTION 

DURING the past decade much work has been done on 
the study of combined free and forced (mixed) convec- 
tion boundary-layer flow about inclined surfaces im- 
mersed in a viscous fluid. For the wedge configuration, 
similarity solutions are obtained by Sparrow et al. [l] 
for the special case where the wall temperature and 
the wedge angle are varying according to a particular 
manner. A series solution, valid for arbitrary values of 
wedge angle and wall temperature distribution, is later 
obtained by Gunness and Gebhart [2]. For the problem 
of mixed convection from a vertical flat plate where 
similarity solutions are not possible, solutions have 
been obtained baaed on the integral method [3], per- 
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turbation method [4&6], local similarity method [7], 
and numerical method [S]. 

The corresponding problem of mixed convection in 
a porous medium has important applications in 
geothermal reservoirs where pressure gradients are 
generated as a result of withdrawal or reinjection of 

geothermal fluids. It appears that the first paper on the 
study of combined free and forced convection in a 

porous medium is due to Combarnous and Bia [9] 
who had studied the effect of mean flow on the onset 
of stability in a porous medium bounded by two iso- 
thermal parallel plates. Numerical solutions are later 

obtained by Horne and O’Sullivan [lo], Cheng and 
Lau [l I], and Cheng and Teckchandani [ 121 to study 
the effects of withdrawal of fluids in a hot-water 
geothermal reservoir. Most recently, Schrock and Laird 
[13] have performed an experimental study on the 
simultaneous withdrawal and injection of fluids in a 

porous medium. 
In this paper we shall study the combined free and 

forced convection boundary-layer flow along inclined 

surfaces embedded in porous media. It is found that 
similarity solutions exist when both the wall tem- 
perature distribution of the plate and the velocity 
parallel to the plate outside the boundary layer vary 
according to the same power function of distance, 
i.e. I~. The value of Gr/Re is found to be the con- 

trolling parameter for the mixed convection from 
inclined plates in a porous medium. Numerical solu- 
tions are obtained for mixed convection from an iso- 

thermal vertical flat plate (i.e. i. = 0) as well as an 
inclined plate with constant heat flux, having an in- 

clined angle of 45” (i.e. 1. = l/3). The criteria for pure 
and mixed convection from inclined surfaces in a 
porous medium are established. 

ANALYSIS 

Consider the problem of combined free and forced 

convection about a wedge with an included angle VUI 
(or a plate inclined at an angle mlr/2 with respect to 

m+O 

(b) 

(cl (d) 

FIG. 1. Coordinate systems. 

the horizontal direction) in a porous medium as shmn 

in Fig. 1, where x and J; are the Cartesian coordinates 
in the direction along and perpendicular to the inclined 
surface under consideration. In the mathematical fry- 
mulation of the problem, we shall assume that III rhc 
convective fluid and the porous medium arc c\ c~.! 
where in local thermodynamic equilibrium, (ii) the IUX- 
perature of the fluid is everywhere below boiling p&i. 
(iii) properties of the fluid and the porous medium arc 

homogeneous and isotropic. and ii\-) the Housine~~ 
approximation is invoked. IJndcr ~hcse assumptior:\. 

the governing equations for khe problem are 

and 

p = p7 [1-/1(7--T, I]. i ~51 

where the “+” signs in equations (2) and (3) are fol 

the coordinate systems shown in Figs. I(a) and (b) 
while the “ - ” signs are for those shown in Figs. I(c) 
and (d); u, t:, gX = gcosm7r/2 and gY = gsin/nn:2 are 
the components of velocity and gravitational acceler- 
ation vectors along the x and !‘ directions; I’. 7: in I(. 

and b are the density, temperature. pressure. viscosity. 
and the thermal expansion coefficient of the fluid; K is 
the permeability of the saturated porous medium: 
y. =r k/(p, C)f is the equivalent thermal diffusivitj with 
k denoting the thermal conductivity of the saturated 
porous medium and (pK C), the product of the density 
and specific heat of the fluid. The subscript “x” in 
equation (5) denotes the condition at infinity. 

The boundary conditions for the problem arc 

.1’ = 0, I’ = 0. r,,, = 7 ( i_ilX’. I ha, hi 

I’+x, UTI L’.,. y-_ 7,. (‘7~ bi 

where A > 0. We will designate as aiding flows wheu 
the buoyancy force has a component in the direction 
of free stream velocity, i.e. ‘KY = 7’, +,4x’ in Figs. 
l(a) and (b), or T, = TX -Ax” in Figs. l(c) and (d). 
On the other hand, we will designate as opposing 
flows when the buoyancy force has a component 
opposite to the free stream velocity such as the case 
with T, = T, -Ax” in Figs. 1 (a) and (b) or K. = 7, + 
Ax” in Figs. l(c) and (d). 

Analogous to the classical boundary-layer theory. wc 
shall separate the saturated porous medium into two 
regions: (i) the boundary-layer region (or inner region) 
adjacent to the inclined surface where density gradient 
of the fluid exists and convection takes place, and (ii) 
the region away from the inclined surface (or the outer 
region) where density of the Huid can he considcrcd 
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to be constant. Thus, for the outer region, we can 
rewrite equations (2) and (3) as 
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introduce the following d~ensionl~s s~il~ity vari- 
ables 

u=-?!! and ,=-!..k 
ax aY ’ 

(8) 

with 4 = (K/p)@+ pgz) denoting the velocity potential 
where z is the coordinate in parallel with the gravi- 
tational acceleration vector and therefore &/&x = 
cos mn/2 and &,By = sin mn/2. Substituting equation 
(8) into equation (l), we have 

V2$ = 0, 

which is the Laplace equation. From potential theory, 
we known that the velocity in the x-direction along 
the inclined surface .for the coordinate shown in Fig. 1 
is given by 

u, = l?x”, (9) 

where B > 0 and n and m are related by m = 2n/‘(n + 1) 
or n = m/(2-m). 

We now turn our attention to the region adjacent 
to the inclined surface where density gradient of the 
fluid exists (i.e. the inner region). If we introduce the 
stream function such that u = a$/ay and o = -@jax, 
the governing equations (l)-(5) in terms of $ and T are 

and 

(11) 

where the “+” sign is for Figs. l(a) and (b) while the 
6. I> - sign is for Figs. l(c) and (d). If convection takes 
place in a thin layer such that a/ax << a/+, it follows 
that (i) the first terms on the LHS of equations (10) 
and (11) are small in comparison to their second terms, 
and (ii) the second term on the RHS of equation (10) 
is small in comparison with the first term provided 
that gX and gu are of the same order of magnitude. 
The latter approximation is valid for a wide range of 
inclined angles except for m = 0 in Figs. l(a) and (c) 
or rn = 1 in Figs. l(b) and (d), i.e. for horizontal 
boundary layers where gX = 0. With boundary-layer 
approximations, equations (10) and (11) are given by 

(12) 

and 

> ’ 
(13) 

where the “+” and “-“signs correspond to the upper 
and lower figures in Fig. 1. It should be noted that the 
boundary condition for the velocity in the x-direction 
at the edge of the boundary layer must be matched 
with the velocity given by equation (9). 

Equation (24) and (25) with equations (21) and (22) 
are the governing equations and boundary conditions 
for the problem of combined free and forced convec- 
tion about aplate inclined with the horizontal direction 
at an angle mn/2 [where m # 0 in Figs. l(a) and (c), 
and m # 1 in Figs. l(b) and (d)] with a wall tempera- 
ture distribution given by T, = T, f AX*, embedded in 
a porous medium with free stream velocity given by 
U, = Bx” where m = 2d/( 1 + ,?). 

To seek similarity solutions for equations (12) and The quantity Gr/Re in equation (25) is a measure 
(13) with boundary conditions (6), (7), and (P), we of relative importance of free to forced convection, and 

u,x 0 I’* y 
vl= 

a X’ (14) 

T-T, 
cl(q)=-. 

Tw-Kc 

In terms of the new variabies, it is easy to show that 
the velocity components are given by 

a = IJ,f’(?)> (17) 

1 au, 'j2 
UC z T 

i > 
{(I-n)tlf’-(l+n)fl, (18) 

and the governing equations (12) and (13) become 

(19) 

where the primes in the equations are the differ- 
entiation with respect to 4 and the positive and negative 
signs in equation (19) denotes aiding and opposing 
flows respectively. 

In terms of new variables, boundary conditions for 
equations (19) and (20) are 

rf=o, f=O, @=l 3 Wa, b) 

q-+03, f’= 1, B=O. (22a b) 

It is apparent that equations (19)-(22) will be in- 
dependent of x if n = A. in equation (19). Under this 
restricted condition, equations (19) and (20) become 

where 

Gr 
z= 

IsAlTw-T, lfl~x/v’ _ IsAABK 

IJ, x/v Bv ’ 

which is the ratio of the modified Grashof number 
and the Reynolds number. 

With the aid of equation (22), equation (23) can be 
integrated once to give 

f'= +$s+1. 
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is the controlling parameter for the present problem. 
Let us now examine the limiting case of Gr/Re --f 0, 
i.e. forced convection about an inclined plate with 
T,. = T, + As” and C’ 1/ = BY’. For the special case of 
GriRe = 0, equations (19)~(20) show that similarity 

solutions are possible for arbitrary values of i and n. 

For this limiting case, equation (19) can be integrated 
to give 

j” = 1 and .f’= 7, (Xa, b) 

where we have made use of boundary conditions (22a) 
and (21a). Substituting equations (26) into equations 

( 15), ( 17) and (18), we have 
I// = P I j’ = fwy. cm 

$4 = c , = Bs”, i‘ = -nBx”- I>., (28a, b) 

which give the flow field near the inclined plate. 
Similarly, the substitution of equations (26) into 

equation (20) yields 

which, with boundary conditions (21b) and (22b), can 

be integrated numerically. 

RESLLTS AND DISCUSSION 

Equations (24) and (25) with boundary conditions 
(21) and (22a) can be integrated numerically by the 
Runge-Kutta method with a systematic guessing of 

B’(O) by the shooting technique. Integration has been 
carried out for the following two cases: (a) A = IZ = 0 
which corresponds to mixed convection from an iso- 
thermal vertical flat plate and (b) i = y1 = l/3 which 

corresponds to mixed convection from a flat plate 
with constant heat flux having an inclined angle of 45”. 
Results for 61(q) and,~‘(~) for both aiding and opposing 

flows are shown in Figs. 2 and 3. 
The results of greatest practical interest in a geo- 

thermal application are the thermal boundary layer 
thickness and the heat-transfer rate. Consider first the 

expression for the local surface heat flux along the 
inclined surface which can be computed from 

where the values of [ - H’(O)J as a function of Gr/Re 
for aiding and opposing flows are tabulated in Tables 
1 and 2 respectively. Equation (30) shows that surface 
heat flux is constant for i. = lj3. Equating equation 
(30) to the definition of iz, i.e. q = h(T,,-T,) and 
rearranging, we have 

(31) 

where Nu = irx/k and Pr I v/k Equation (3 1) for aiding 
flows with A. = 0 and I, = l/3 is plotted in Fig. 4 as a 
function of Gr/Re. It will be of interest to plot the 
corresponding expressions for pure free and pure 
forced convection in the same figure. For this purpose 
let us consider the case of forced convection where 
Gr/Re = 0. From Table 1, we have 

.2L = ().5@1 
(RePr)’ ‘* 

()* z.c q, 

[iiN$Z = 0.8540 (/I = l/3), 

(32) 

-AidkrpFIOWS 

- - - Opposing Flam 

‘. Gr /Re 

Forced Convection 

(of A=0 
b --AidhFlows 

--- Opqming Finws 

X6 
-0.6 
,.- 1.0 

\ 
‘\ 

FIG 2. Dimensionless temperature vs ‘1 for aiding and 
opposing flows (a) i = 0 and (h) I = I :3. 

Table I. Values of -o’(O) and y7 for aiding flows 
__-..-..__ ~~~_~__~_~~-~“.“.. -. 

j. = 0 j. =. I 3 

GriRe -O’(O) ) I 1 -- O’(Oi ti I 

0 0.5641 3.6 Ct.8540 2.9 
0.5 0.6473 3.3 0.9816 2.7 
1.0 0.7205 3.1 1.093 Z.? 
3.0 0.9574 2.5 I.456 -. ‘I 

10.0 1.516 1.7 3.311 i.4 
20.0 2.066 1.3 .3.IF2 ;. 

Table 2. Values of -0’(O) and qT for opposing fhvs 

i. = 0 L ; I 3 

GrJRe -o'(O) '1 I -- O'(0) Ji? 

0.2 0.5269 3.8 0.7970 3.0 
0.4 0.4865 3.9 0.735 I 12 
0.6 0.4420 4.2 0.667 1 3.3 
0.8 0.3916 4.5 0.5903 35 
1.0 0.3320 4.9 0.4999 :.s 

___-__- ,_-_- ..-. - - -.- 
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Ffc. 4. Heat-transfer results for aiding Rows 

which can also be obtained alternatively from the which cm be rewritten ns 
imegrzkm of equation 69) with n = A. From the work ._ _I_ 
of Cheng and Miukowycz r14], we have the following 
exptesslons for free convecfion aboul. an inclined plate 
in a porous medium 
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of Nza/(RePr)‘:’ for aiding flows lies above the asymp- 
totes and that the maxims deviation from the 
asymptotes is 25~.307: which occurs near Gr/Re = 1.6. 

The criteria for pure or mixed convection in a porous 
medium can be established if we follow the 5”,, devi- 
ation rule suggested by Sparrow et ul. [I]. If this rule 

is applied to the local heat-transfer rate for aiding flows 
shown in Fig. 4, we have the following subdivisions 

0 < GriRr < 0.15 forced convection. (35a) 

0.1s i Gr.Re < 16 mixed flow. (35b) 

16 < Gr,Rc free convection. t35c) 

,,o _-.-.. ____~_ __.._ ._. ._ 

~-------- 

.._I____-_ 
Opposing Flows ! 

--I--_- 

k-1 -----y 
( 

1 s 
---- Forced Convaction Asymptote / 

/ 
0.2 

t 

/ 

L 1 

0 010 0.2 0.3 0.4 0.5 1.0 

Er me 

F‘IC;. 5. Heat-transfer results for opposing flows. 

The values of Nu,i(RePr)“” vs Gr,fRe for opposing 

flows are plotted in Fig. 5 which shows that at small 
values of Gr/Rr the curve approaches the forced con- 

vection asymptote. If the 5:‘;, deviation rule is again 
applied for opposing flows, it is found that equation 
(35a) is still valid but with equation (35b) replaced by 

0.15 < Gr,‘Re. (36) 

The total surface heat-transfer rate for a flat plate 
with a length L and a width of S can be computed 
from 

(’ I. 
Q = S 

J 
y(.v)d.x, (37) 

fl 

which, after the substitution of equation (30) gives 

Consider next the expression for thermal boundary- 

layer thickness. If rlT is the value of q at which O(Q) 
has a value of 0.01, we hav*e, from equation (14) 

6r ‘1.1, 
; = i&j+.? ’ 

where the values of tjr are tabulated in Tables L and 2 
for aiding and opposing flows. It will be of interest to 
show the values of (RePr)‘;‘ST/.~ in the free and forced 
convection limits. This is done in Fig. 6 for aiding flow 
where the free convection asymptotes are given by 

Cheng and Mikowycz [ 141 

To gain some feeling on the order of mapnitudc of 

various physical quantities in a geothermal application. 
consider a heated isothermal itnpermeablc vcrtic:tl 
surface. I x 1 km, embedded in an aquifer where ;! 
pressure gradient exists. if the temperature of the iin!- 
permeable surface and the aquifer are at 215 and 1 i i 
respectively and the pressure gradient i\ such th;it 

causes the groundwater moving upward vertically, the 
heat-transfer rate and the size of the hot water JOIK 
can be determined from Figs. 4 and 6. For JI~IIKYI~.,I~ 
calculations. the following values of phy sical propert:+ 
are used: ii = 1.Xx to-“‘C, jjX -= lO”gm’, f’ -. i .c;ii 

g “C, jr = 0.27 gism, I<, = 0.58 cal:s “C m, and K 
lo-” m”. The results of the computations for C , 
varying frotn 0.01 cm/h to 10 cmh arc plotted III I 1g5. 
7 and 8 where it is shown that the total heat tr;msf~t 
rate increases from 20 to 120 M W while the bountfar~ 
layer thickness at f km ciecrcases from 130 to 30 m 

,()(yJ__--_--__ ~_. --. 

500 
400 

E 300 

- / 
g 200 
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CONCLUDING REMARKS 6. 
The foregoing analysis is based on the boundary- 

layer approximations and neglecting the component of 

buoyancy force normal to the inclined surface. The 
latter assumption will break down when the inclined 
surface becomes horizontal. Thus, the analysis for mix 
convection about horizontal impermeable surfaces in 
a porous medium must be treated separately [15]. 

7, 

8. 
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ECOULEMENTS MIXTES A COUCHE LIMITE LE LONG D’UNE 
SURFACE INCLINEE DANS UN MILIEU POREUX 

R&sum&On analyse g partir des approximations de la couche limite le probltme de la convection mixte 
sur des surfaces inclinks (diMres) dans un milieu poreux saturk. Des solutions affines sont obtenues 
dans le cas particulier od la vitesse de I’tcoulement libre et la distribution de temptrature parit-tale 
varient selon la mdme fonction puissance de la distance. On considtre les &oulements favorables et 
dbfavorables. Le param&re Gr/Re gouverne la convection mixte autour des surfaces inclin&s. Des 
solutions numtriques sont obtenues pour une plaque plane verticale isotherme et pour une plaque 
inclink B flux constant avec un angle d’inclinaison eggal & 45”. On donne les profils de tempkrature et 
de vitesse dans ces deux cas pour diffkrentes valeurs de Gr/Re. Pour les tcoulements favorables le transfert 
thermique approche les valeurs asymptotiques des convections for&s et naturelle lorsque Gr/Re 
approche les limites nulle et infinie. Les crittres de la convection pure ou mixte autour des surfaces 

inclinks dans les milieux poreux sont pr&isCs. 

KOMBINIERTE FREIE UND ERZWUNGENE GRENZSCHICHTSTRCjMUNGEN 
AN GENEIGTEN OBERFLACHEN IN EINEM PORC)SEN MEDIUM 

Zusammenfassung-Das Problem der kombinierten freien und erzwungenen Konvektion an geneigten 
OberflCchen (oder an keilfiirmigen Kiirpern) in einem gesgttigten, poriisen Medium wird anhand von 
Nlherungslasungen der Grenzschichtgleichungen untersucht. AhnlichkeitslGsungen ergeben sich fiir den 
speziellen Fall, daDGeschwindigkeits- und Temperaturverteilungiiber der geneigten Oberflache demselben 
Potenzgesetz gehorchen. Es werden StrGmungen in Richtung des Auftriebs sowie entgegen dem Auftrieb 
betrachtet. Als beherrschender Parameter fiir die gemischte Konvektion an gene&en Oberfllchen ergab 
sich der Quotient Gr/Re. Fiir die gemischte Konvektion an einer isothermen, vertikalen ebenen Platte 
sowie an einer urn 45” geneigten Platte bei konstanter WIrmestromdichte werden numerische L&ungen 
sowie die Temperatur- und Geschwindigkeitsprofile fiir verschiedene Werte von Gr/Re angegeben. Bei 
Stramungen in Auftriebsrichtung nghert sich der Wlrmeiibergangskoeffizient asymptotisch den Werten 
bei erzwungener (Gr/Re + 0) bzw. freier Konvektion (Gr/Re + co). Fiir die reine und gemischte Kon- 

vektion an geneigten Oberfllchen in portisen Medien werden Kriterien aufgestellt. 
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TEYEHHE B IIOl-PAHMYHOM CJIOE HA HAKJIOHHOR IIOBEPXHOCTM 
B IIOPIlCTO~ CPEAE I-IPM COBMECTHOI;I CBOSOAHOr;l M 

BbIHYxAEHHOti KOHBEKUFWI 

hHOTaqI0I - B npu6nexeHm nOrpaHHYHOr0 CJIOR aHanH3apyeTcfl COBMeCTHaR cBO60AHaR 14 

BbIHyxAeHHaR (CMeLUaHHaa) KOHBeK,QfII Ha HaKJIOHHOfi nOBepXHOCTH (WIH KSIHHbRX) B HaCblLUeHHOii 

rropac~o2t cpeye. nonyreribr aBTohfoAenbHbIe pemeHus Am cnyran, KorAa CKOP~CT~ Ha6eramIuero 

ISOTOKa U TeMnepaTypa CTeHKEl HaKJlOHHOti nOBepXHOCTH ASMeHSOoTCI1 n0 OAHOfi H TOii xe CTeIleHHOZi 

I$~HKIU~H paCCTO5IHHSL PaCCMOTpeHbI CJIyYaA CIlyTHOrO II 06paTHOrO TeYeHUR. HafiAetio, ‘IT0 OT- 

HOIUeHUe Gr/Re IBnReTCfl IIapZlMeTpOM, OII&LlenX3OIWiM IlpOWCC CMelLlaHHOZt KOHBeKUWA Ha HBKJIOH- 

HOk nOBepXHOCT&, B IIOpHCTOi? CpeAe. nOJIy’IeHb1 WiCJIeHHbIe peUIeHA5l AJIR CMeIlIaHHOii KOHBeKUHH OT 

U30TepMHWCKO~ llnOCKOfi ILll~CTUHbI, a TBKXKB nJIaCTUHb1, HaKllOHeHHOfi IIOA yfJIOM 45 ., IIpA IIOCTOIIH- 

HOil TWIJIOBOM IIOTOKC j$ui 3TIIX ABYX Cnj’WeB IIpIiBeA‘ZHbI IlpO#inH TeMtlepZiTypbI A CKOPOCTH AXR 

pa3JIE’IHbIX 3HareHkifi OTHOIIleHHR Gr/Re. nOKa3aH0, YTO DIR CIlyTHOl-0 Te’ieHHR CKOpOCTb rennoo6- 
MeHa aCWMIITOTW’ieCKW npw6nwxaeTcn K 3Ha4eHHXM. XapaKTepHblM AJIR BbIHyxAeHHOfi PinEi CBO60A- 

HOfi KOHEleKUWB, n0 Mepe TOTO, KaK OTHOIIleHRe GrjRe CTpeMEiTCSI K HYJlKJ UJIH 6WKOHWHOCTU. 

YCTaHOBneHbI K,,HT’?pHH Anff CBO60AHOfi U CMelIlaHHOti KOHBeKLWi Ha HiiKJIOHHblX nOBepXHOCTSIX B 

nOpHCTbIX cpeAax. 


